Math Logic: Model Theory & Computability Lecture 08

Detervitibly as a geometric (descriptive concept (vibbout or formulas).
Let
$$A := (A, v)$$
 be a so-structure. For a cet $P \le A$, we denote by $Oet_{a}^{*}(P)$
the set of all P -definable subsets of A^{*} (relations of a city s).
Let $Det_{B}(P) := \bigcup Det_{B}^{*}(P)$.
All A family $B \le Por(A)$ of subsets of A is called a (Booleac) algebra if
 $\emptyset \in B$ and B is closed where complements ($S \in B \Rightarrow A \setminus S \in B$) and
finite unions $(S_{1}, S_{2} \in B \Rightarrow S_{1} \cup S_{2} \in B)$.
Dult for each $n \in N$, $Det_{A}^{*}(P)$ is an algebra.
The ancertives \neg and \vee arrespond to the set operations complement and
union. What set operation does \exists increased to $?$
 $A \uparrow \bigcap_{i=1}^{S} S = \{i_{i}, i_{i}\} \in A^{*} : A \models \exists u : \Psi(i_{i}^{*}, u, p^{*})\}^{-}$
 $= \{i_{i} \in A^{*} : Marc is b \in A : s.t. A \models \Psi(i_{i}^{*}, b, p^{*})\}$.
 $Pri_{i}(S) = A^{*}$ is dosed under projections (= images of projections).
All $A = Many variable to the vector extending a formula corresponds to
taking preimages weller projections:$

$$\begin{array}{c} \underbrace{Ohs3}{Pirs} & \operatorname{Dif}_{\mathsf{B}}(\mathsf{P}) \text{ is cloud under precise yes of projections, i.e. if $\mathsf{B} \in \operatorname{Def}_{\mathsf{B}}^{\mathsf{m}}(\mathsf{P}) \\ \text{ then } \mathsf{B} \times \mathsf{A} \in \operatorname{Def}_{\mathsf{B}}^{\mathsf{m}}(\mathsf{P}). \end{array}$

We can also premate the order of variables in an extended formula, and this corresponds to permutation of coordinate view. And the solution of a definable set:

Otree. Def (P) is cloud under prematation of coordinate view. for a $\mathsf{A}^{\mathsf{m}} \mapsto \mathsf{A}^{\mathsf{m}} \ \mathsf{m} \$$$

This motivation the following deficition. Det. let A be a set and for each nGFN, let Dube a collection of subsets of A^h. For a set PEA, we call $D := \bigcup Du P-construc-$ i. ...dive if Du is an algebra for each nEIN. (i)(ii) D is closed under (imager of) projections. (iii) D is closed under preimager of projections. (ii) D is closed under permitations of coordinates. lívj (v) N is closed under taking fibers over points in P. Observations 1-5 imply that Def (P) is P-conctanctive, and in fact. Theorem. For a c-structure A == (A, o) and PEA, the collection Dely (P) is the P-mastructure collection generated by I ke smallest P-const two fines collection of the smallest P-const (i) constants: { c²} for each ce (oust (a), (ii) graphs it for chipus: has for each fE Fourt (O), (iii) relations: Rª for each RG Rel(o). Proot. We already from Mt Det (P) is such a collection and to show Shut it's the smallest, take another rach collection D= VDn and Mor that Def (P) = D by induction on the construction of for-mulas. This is left as an exercise.

Theories, models, and axiomatizations. For a signature of a o-theory is just a set of o-subenes. For a o-theory T, we refer to the subeness in T as the axioms of T.

Def. For a collection & of
$$\sigma$$
-structures, we say that a σ -threag T is an axiomatization for C if $C = M\sigma(T)$. For σ -theories T_1, T_2 , we say that T_1 and T_2 are equivalent if $M_{\sigma}(T_1) = M_{\sigma}(T_2)$.
A σ -threag T is said to be finitely axiomatizable if there is a finite σ -threag T' equivalent to T.

Examples. (a) let J be a signature. For fixed nEW⁺, the class
$$\mathcal{L}_{su}$$
 of
all J-stimultures of cardinality $\leq n$ is axiomatized
by the following sentence:
 $\mathcal{L}_{su} := \exists x_1 \exists x_2 ... \exists x_n \forall y (y=x_1 \cup y=x_2 \cup ... \cup y=x_n).$
Thus, the class \mathcal{L}_{su} of all J-standards with some elements
is axiomatized by $\varphi := \neg \mathcal{L}_{su}$.

$$T_{\infty} := \left\{ \varphi_{21}, \varphi_{22}, \varphi_{23}, \dots \right\} = \left\{ \varphi_{2n} : n \in [N^{\dagger}] \right\}.$$